Risk analysis and risk assessment

As simple and comprehensible as possible, e.g. using the semiquantitative method. Assess probabilities qualitatively, impacts quantitatively.

Select options for action in a targeted manner

- Prevent dangers, promote opportunities
- Reduce the impact of hazards
- Maximize impact from opportunities
- Transfer risks
- Consciously accept the unavoidable remaining risks

Determine measures at an early stage

Threshold values must be defined for each risk in order to trigger the right measures in good time.

Control risk events

Control events by using prepared mitigation measures and gradually ramp up normal operation again.

The owner is the initiator and driver

The owner initializes the risk management process and implements it as a team task with the involvement of all key project partners, knowledge holders and experts throughout the entire duration of the project.

Risk management only works in a corporate and project culture in which openness and transparency prevail.

Recommendations for

Project Risk Management in Underground Construction

German Tunnelling Committee

c/o STUVA e.V. Mathias-Brüggen-Straße 41 50827 Cologne, Germany Phone: +49 (221) 597950 E-Mail: info@daub-ita.de

"No construction project is risk free.

... Risk can be managed, minimised, shared, transferred, or accepted. It cannot be ignored."

(Sir Michael Latham, 1994)

Risk management helps to control threats and seize opportunities

The proportion of the unknown and unrecognized is greatly reduced at an early stage

Risk events are not coincidences -

they have a cause and concrete effects on the achievement of the project goals (quality, functionality, deadlines, costs).

Possible cause categories

- Ground conditions, existing structures (major risk cause in underground construction)
- · Legal framework and subsequent changes
- Procedures (planning permission, contract award, land acquisition)
- Financing
- · Politics, economy
- Design, project preparation
- Execution
- Construction supervision
- · Changes and variations
- Contractual risks
- Interfaces
- · Operation of nearby facilities
- Natural hazards
- Accidents, incidents
- Force majeure

Possible Project requirements

- Functionality, quality
- Occupational health, safety
- · Protection of the environment, sustainability
- Public acceptance
- Protection of property and rights of third parties
- Efficient organisation, processes
- Deadlines
- Costs

DAUB Recommendations for Project Risk Management in Underground Construction

The **standard process from ISO 31010** is also used for underground construction. This process must be repeated continuously during all project phases until the end of the project.

Risk register as a management tool

The risk register is the key instrument for risk identification, action planning and implementation control.

German Tunnelling Committee

